If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+5=269
We move all terms to the left:
6k^2+5-(269)=0
We add all the numbers together, and all the variables
6k^2-264=0
a = 6; b = 0; c = -264;
Δ = b2-4ac
Δ = 02-4·6·(-264)
Δ = 6336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6336}=\sqrt{576*11}=\sqrt{576}*\sqrt{11}=24\sqrt{11}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{11}}{2*6}=\frac{0-24\sqrt{11}}{12} =-\frac{24\sqrt{11}}{12} =-2\sqrt{11} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{11}}{2*6}=\frac{0+24\sqrt{11}}{12} =\frac{24\sqrt{11}}{12} =2\sqrt{11} $
| 0=12x+350 | | 5(2c-2)=2(c+11) | | 2.6/0.9p=-1(-1p-2.1) | | 4.3g+5=1.3g+14 | | x^+18=0 | | X(90+8)=n | | 58+3x+4=180 | | 5+10y=4 | | 8a+1=-7 | | 5.3g+4=3.3g+8 | | F(-1)=2x+4 | | 12w-40=8 | | F(-2)=2x+4 | | F(c)=23 | | 8x=20=-10+10x | | 1/8=6u | | -15x=33 | | 6+4f=-4=2(3-5f) | | 175-w=237 | | 4y+5(-3y-9)=-6(4y-5)=7 | | 249=-w+27 | | -4(-5z+6)=-5z-6 | | -2k-3k+5=2k-8 | | 70x/12=-2 | | 70/12x=-2 | | -8(t)=5/4(4-t) | | 32x.75=24 | | A=3.14x144^2 | | x=61.5 | | 85+0.6h=82 | | )k-8)12=84 | | 51^2+140^2=c^2 |